Using your personal computer for astronomy

Default value input routine
G++YG++ or G++NG++ input routine MINSEC converts between decimal hours/degrees and min/sec form

JULDAY calendar date to Julian day number since 1900 Jan. 0.5
CALDAY Julian day number since 1900 Jan. 0.5 to calendar date
TIME converts between local civil and sidereal times
EQHOR converts between equatorial and horizon coordinates
HRANG converts between right ascension and hour-angle
OBLIQ calculates the value of the obliquity of the ecliptic
NUTAT finds corrections for nutation in longitude and obliquity
EQECL converts between equatorial and ecliptic coordinates
EQGAL converts between equatorial and galactic coordinates
GENCON converts between any of the coordinate systems
PROCESS1 approximate precession of equatorial coordinates
PROCESS2 rigorous precession of equatorial coordinates
PARALLX converts between geocentric and apparent position
REFRACT calculates the effect of atmospheric refraction
RISET finds the circumstances of rising and setting
ANOMALY solves KeplerG++s equation for elliptical motion
SUN finds the ecliptic coordinates of the Sun
SUNRS finds the circumstances of sunrise and sunset
PELMENT returns the orbital elements of the major planets
PLANS finds the position of a planet
MOON finds the position and parallax of the Moon
MOONRS finds the circumstances of moonrise and moonset
MOONNF finds the times of new and full moon
ECLIPSE finds the circumstances of lunar and solar eclipses
Displays an eclipse in graphical form
ELOSC finds positions from osculating elliptical elements
RELEM converts ecliptic orbital elements from one epoch to another
PCOMET finds the position of a comet from parabolic elements
PFIT finds parabolic elements from observations
EFIT finds elliptical elements from observations

List of variables
Bibliography
Index

Table of Contents provided by Blackwell's Book Services and R.R. Bowker. Used with permission.