Preface
Rotating Machine Insulation Systems
Types of Rotating Machines
AC Motors
Synchronous Generators
Classification by Cooling
Purpose of Windings
Stator Winding
Insulated Rotor Windings
Squirrel Cage Induction Motor Rotor Windings
Types of Stator Winding Construction
Random-Wound Stators
Form-Wound Stators--Coil Type
Form-Wound Stators--Roebel Bar Type
Stator Winding Insulation System Features
Strand Insulation
Turn Insulation
Groundwall Insulation
Groundwall partial Discharge Suppression
Groundwall Stress Relief Coatings
Mechanical Support in the Slot
Mechanical Support in the End-Winding
Transposition Insulation
Rotor Winding Insulation System Components
Salient Pole Rotor
Round Rotors
Induction Motor Wound Rotors
References
Evaluating Insulation Materials and Systems
Aging Stresses
Thermal Stress
Electric Stress
Ambient Stress (Factors)
Mechanical Stress
Multiple Stresses
Principles of Accelerated Aging Tests
Candidate and Reference Materials/Systems
Statistical Variation
Failure Indicators
Thermal Endurance Tests
Basic Principles
Stator Winding Insulation Systems in Current Use p. 95
Methods of Applying Form-Wound Stator Coil Insulation p. 97
Description of Major Trademarked Form-Wound Stator Insulation Systems p. 99
Westinghouse Electric Co.: Thermalastic p. 99
General Electric Co.: Micapals I and II Epoxy Mica Mat, Micapal HT, and Hydromat p. 100
Alstom, GEC Alsthom, Alstom Power: Isotenax, Resitherm, Resiflex, Resivac and Duritenax p. 101
Siemens AG, KWU: Micalastic p. 102
ABB Industrie AG: Micadur, Micadur Compact, Micapact, Micarex p. 102
Toshiba Corporation: Tosrich, Tostight I p. 103
Mitsubishi Electric Corporation p. 104
Hitachi Ltd.: HiResin, Hi-Mold, Super Hi-Resin p. 104
Summary of Present-Day Insulation Systems p. 104
Recent Developments for Form-Wound Insulation Systems p. 105
Random-Wound Stator Insulation Systems p. 107
Magnet Wire Insulation p. 107
Phase and Ground Insulation p. 108
Varnish Treatment and Impregnation p. 108
Revolutionary Stator Winding Insulation Systems p. 108
Superconducting Windings p. 108
PowerFormer p. 109
References p. 110
Rotor Winding Insulation Systems p. 113
Rotor Slot and Turn Insulation p. 114
Collector Insulation p. 115
End-Winding Insulation and Blocking p. 116
Retaining Ring Insulation p. 116
Direct-Cooled Rotor Insulation p. 117
Core Laminations and Their Insulation p. 119
Electromagnetic Materials p. 119
Magnetic Fields p. 119
Ferromagnetism p. 119
Magnetization Saturation Curve p. 120
Ferromagnetic Materials p. 120
Permeability p. 121
Hysteresis Loop p. 121
Eddy Current Loss p. 122
Other Factors Affecting Core Loss p. 122
Effect of Direction of the Grain p. 124
Effect of Temperature p. 124
Effect of Heat Treatment p. 124
Effect of Impurities and Alloying Elements p. 124
Symptoms
Remedies
References
Rotor Winding Failure Mechanisms and Repair
Round Rotor Windings
Thermal Deterioration
Thermal Cycling
Abrasion Due To Imbalance or Turning Gear Operation
Pollution (Tracking)
Repetitive Voltage Surges
Centrifugal Force
Remedies
Salient Pole Rotor Windings
Thermal Aging
Thermal Cycling
Pollution (Tracking and Moisture Absorption)
Abrasive Particles
Centrifugal Force
Repetitive Voltage Surges
Remedies
Wound Induction Rotor Windings
Transient Overvoltages
Unbalanced Stator Voltages
High-Resistance Connections--Bar Lap and Wave Windings
End-Winding Banding Failures
Slip Ring Insulation Shorting and Grounding
Remedies
Squirrel Cage Induction Rotor Windings
Thermal
Cyclic Mechanical Stressing
Poor Design/Manufacture
Repairs
References
Core Lamination Insulation Failure and Repair
Thermal Deterioration
General Process
Root Causes
Common Symptoms
Electrical Degradation
General Process
Root Causes
<table>
<thead>
<tr>
<th>Test Method</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC Hipot Test</td>
<td>247</td>
</tr>
<tr>
<td>Purpose and Theory</td>
<td>248</td>
</tr>
<tr>
<td>Test Method</td>
<td>249</td>
</tr>
<tr>
<td>Interpretation</td>
<td>249</td>
</tr>
<tr>
<td>Capacitance Test</td>
<td>249</td>
</tr>
<tr>
<td>Purpose and Theory</td>
<td>250</td>
</tr>
<tr>
<td>Test Method</td>
<td>250</td>
</tr>
<tr>
<td>Interpretation</td>
<td>251</td>
</tr>
<tr>
<td>Capacitance Tip-Up Test</td>
<td>252</td>
</tr>
<tr>
<td>Purpose and Theory</td>
<td>252</td>
</tr>
<tr>
<td>Test Method</td>
<td>253</td>
</tr>
<tr>
<td>Interpretation</td>
<td>253</td>
</tr>
<tr>
<td>Capacitive Impedance For Motor Stators</td>
<td>254</td>
</tr>
<tr>
<td>Dissipation (or Power) Factor Test</td>
<td>254</td>
</tr>
<tr>
<td>Purpose and Theory</td>
<td>255</td>
</tr>
<tr>
<td>Test Method</td>
<td>255</td>
</tr>
<tr>
<td>Interpretation</td>
<td>257</td>
</tr>
<tr>
<td>Power (Dissipation) Factor Tip-Up Test</td>
<td>257</td>
</tr>
<tr>
<td>Purpose and Theory</td>
<td>257</td>
</tr>
<tr>
<td>Test Method</td>
<td>258</td>
</tr>
<tr>
<td>Interpretation</td>
<td>259</td>
</tr>
<tr>
<td>Off-Line Partial Discharge Test</td>
<td>259</td>
</tr>
<tr>
<td>Purpose and Theory</td>
<td>259</td>
</tr>
<tr>
<td>Test Method</td>
<td>261</td>
</tr>
<tr>
<td>Interpretation</td>
<td>262</td>
</tr>
<tr>
<td>Partial Discharge Probe Tests</td>
<td>263</td>
</tr>
<tr>
<td>Purpose and Theory</td>
<td>263</td>
</tr>
<tr>
<td>Test Method</td>
<td>264</td>
</tr>
<tr>
<td>Interpretation</td>
<td>264</td>
</tr>
<tr>
<td>Stator Surge Comparison Test</td>
<td>265</td>
</tr>
<tr>
<td>Purpose and Theory</td>
<td>265</td>
</tr>
<tr>
<td>Test Method</td>
<td>267</td>
</tr>
<tr>
<td>Interpretation</td>
<td>267</td>
</tr>
<tr>
<td>Inductive Impedance Test</td>
<td>268</td>
</tr>
<tr>
<td>Semiconductive Coating Contact Resistance Test</td>
<td>269</td>
</tr>
<tr>
<td>Purpose and Theory</td>
<td>269</td>
</tr>
<tr>
<td>Test Method</td>
<td>269</td>
</tr>
<tr>
<td>Interpretation</td>
<td>270</td>
</tr>
<tr>
<td>Conductor Coolant Tube Resistance</td>
<td>270</td>
</tr>
<tr>
<td>Purpose and Test Method</td>
<td>270</td>
</tr>
<tr>
<td>Stator Wedge Tap Test</td>
<td>270</td>
</tr>
</tbody>
</table>
Purpose and Theory
Test Method
Interpretation
Slot Side Clearance Test
Purpose and Theory
Test Method
Interpretation
Stator Slot Radial Clearance Test
Purpose and Theory
Test Method
Interpretation
Stator End-Winding Resonance Test
Purpose and Theory
Test Method
Interpretation
Rotor Voltage Drop Test
Purpose and Theory
Test Method
Interpretation
Rotor RSO and Surge Test
Purpose and Theory
Test Method
Interpretation
Rotor Growler Test
Purpose and Theory
Test Method
Interpretation
Rotor Fluorescent Dye Penetrant
Purpose and Theory
Test Method and Interpretation
Rotor Rated Flux Test
Purpose and Theory
Test Method
Interpretation
Rotor Single-Phase Rotation Test
Purpose and Theory
Test Method
Interpretation
Stator Blackout Test
Purpose and Theory
Test Method
Purpose and Theory
Test Method
Interpretation
Rated Flux Test
Purpose and Theory
Test Method
Interpretation
Core Loss Test
Purpose and Theory
Test Method
Interpretation
Low Core Flux Test (EL-CID)
Purpose and Theory
Test Method
Interpretation
References
Acceptance and Site Testing of New Windings
Stator Windings Insulation System Prequalification Tests
Power Factor Tip-Up Test
Partial Discharge Test
Impulse (Surge) Test
Voltage Endurance Test
Thermal Cycling Test
Thermal Classification Tests
Stator Winding Insulation System Factory and On-Site Tests
Insulation Resistance and Polarization Index Tests
AC and DC Hipot Tests
Impulse (Surge) Tests
Strand-to-Strand Test
Power Factor Tip-Up Test
Partial Discharge Test
Capacitance Test
Semiconductive Coating Test
Wedge Tap
Factory and On-Site Tests for Rotor Windings
Tests Applicable to All Insulated Windings
Round-Rotor Synchronous Machine Windings
Salient Pole Synchronous Machine Windings
Wound Induction Rotor Windings
Squirrel Cage Rotor Windings
Core Insulation Factory and On-Site Tests