Preface to the Third Edition
Newton, Fizeau, and Haidinger Interferometers
Introduction
Newton Interferometer
Source and Observer’s Pupil Size Considerations
Some Suitable Light Sources
Materials for the Optical Flats
Simple Procedure for Estimating Peak Error
Measurement of Spherical Surfaces
Measurement of Aspheric Surfaces
Measurement of Flatness of Opaque Surfaces
Fizeau Interferometer
The Basic Fizeau Interferometer
Coherence Requirements for the Light Source
Quality of Collimation Lens Required
Liquid Reference Flats
Fizeau Interferometer with Laser Source
Multiple-Beam Fizeau Setup
Testing Nearly Parallel Plates
Testing the Inhomogeneity of Large Glass or Fused Quartz Samples
Testing the Parallelism and Flatness of the Faces of Rods, Bars and Plates
Testing Cube Corner and Right-Angle Prisms
Fizeau Interferometer for Curved Surfaces
Testing Concave and Convex Surfaces
Haidinger Interferometer
Applications of Haidinger Fringes
Use of Laser Source for Haidinger Interferometer
Other Applications of Haidinger Fringes
Absolute Testing of Flats
Twyman-Green Interferometer
Introduction
Beam-Splitter
Optical Path Difference Introduced by the Beam Splitter Plate
Required Accuracy in the Beam Splitter Plate
Cube Beam Splitter
Coherence Requirements
Spatial Coherence
Temporal Coherence
Uses of a Twyman-Green Interferometer
Testing of Prisms and Diffraction Rulings
Testing of Lenses
Testing of Microscope Objectives
Compensation of Intrinsic Aberrations in the Interferometer
Unequal-Path Interferometer
Some Special Designs
Improving the Fringe Stability
Open Path Interferometers
Mach-Zehnder Interferometers
Triangular Interferometers
Oblique Incidence Interferometers
Variations from the Twyman-Green Configuration
Interferometers with Diffractive Beam Splitters
Phase Conjugating Interferometer
Typical Interferograms and their Analysis
Analysis of Interferograms of Arbitrary Wavefronts
Common-Path Interferometers
Introduction
Burch’s Interferometer Employing Two Matched Scatter Plates
Fresnel Zone Plate Interferometer
Burch and Fresnel Zone Plate Interferometer for Aspheric Surfaces
Burch and Fresnel Zone Plate Interferometers for Phase Shifting
Birefringent Beam Splitters
Savart Polariscope
Wollaston Prism
Double-Focus Systems
Lateral Shearing Interferometers
Use of a Savart Polariscope
Use of a Wollaston Prism
Double-Focus Interferometer
Saunders’s Prism Interferometer
Point Diffraction Interferometer
Zernike Tests with Common-Path Interferometers
Measurement of the Optical Transfer Function
Lateral Shear Interferometers
Introduction
Coherence Properties of the Light Source
Brief Theory of Lateral Shearing Interferometry
Interferograms of Spherical and Flat Wavefronts
Interferograms of Primary Aberrations upon Lateral Shear
Evaluation of an Unknown Wavefront
Lateral Shearing Interferometers in Collimated Light (White Light Compensated)
Arrangements Based on the Jamin Interferometer
Arrangements Based on the Michelson Interferometer
Arrangements Based on a Cyclic Interferometer
Arrangements Based on the Mach-Zehnder Interferometer
Lateral Shearing Interferometers in Convergent Light (White-light Compensated)
Arrangements Based on the Michelson Interferometer
Arrangements Based on the Mach-Zehnder Interferometer
Lateral Shearing Interferometers Using Lasers

Table of Contents provided by Blackwell's Book Services and R.R. Bowker. Used with permission.