Introduction
Basic physiology/pharmacology
Myocardial potassium channels: primary determinants of action potential repolarization

Introduction
Action Potential Waveforms and Repolarizing K
Functional Diversity of Repolarizing Myocardial K
Molecular Diversity of K
Molecular Determinants of Functional Cardiac I
Molecular Determinants of Functional Cardiac I
Molecular Determinants of Functional Cardiac Kir Channels
Other Potassium Currents Contributing to Action Potential Repolarization

Myocardial K
The “funny” pacemaker current
Introduction: the mechanism of cardiac pacemaking
The “funny” current
Historical background
Biophysical properties of the I
Cardiac distribution of I
Molecular determinants of the I
HCN clones and pacemaker channels
Identification of structural elements involved in channel gating
Regulation of pacemaker channel activity: "context" dependence and protein-protein interactions
"HCN gene regulation"
Blockers of funny channels
Alinidine (ST567)
Falipamil (AQ-A39), Zatebradine (UL-FS 49) and Cilobradine (DK-AH269)
ZD7288
Ivabradine (S16257)
Effects of the heart rate reducing agents on HCN isoforms
Genetics of HCN channels
HCN-KO models
Pathologies associated to HCN dysfunctions
HCN-based biological pacemakers
Arrhythmia mechanisms in ischemia and infarction
Introduction
Arrhythmogenesis in Acute Myocardial Ischemia
Arrhythmogenesis during the first week post MI
Arrhythmia mechanisms in chronic infarction
Antiarrhythmic drug classification
Introduction
Sodium Channel Blockers
IKur Blocker
Inhibitors of Calcium Channels
Inhibitors of Adrenergically-modulated electrophysiology
Adenosine
Digoxin
Conclusions
Safety Pharmacology
Repolarization reserve and proarrhythmic risk
Definitions and Background
The Major Players Contributing to Repolarization Reserve
Mechanism of Arrhythmia due to Decreased Repolarization Reserve
Clinical Significance of the Reduced Repolarization Reserve
Repolarization Reserve as a Dynamically Changing Factor
How to measure Repolarization Reserve
Pharmacological Modulation of the Repolarization Reserve
Conclusion
Safety Challenges in the development of novel antiarrhythmic drugs
Introduction
Review of Basic Functional Cardiac Electrophysiology
Safety Pharmacology Perspectives on Developing Antiarrhythmic Drugs
Proarrhythmic Effects of Ventricular Antiarrhythmic Drugs
Ranolazine: an Anti-anginal Agent with a Novel Electrophysiologic
Avoiding Proarrhythmia with Atrial Antiarrhythmic Drugs
The quest for atrial selective ion channel blocking drugs
Conclusions- Present-day Safety Challenges in the Development of Novel Antiarrhythmic Drugs
Safety Pharmacology and regulatory issues in the development of antiarrhythmic medications
Introduction
Basic Physiological Considerations
Historical Considerations
Opportunities for Antiarrhythmic Drug Development in the Present Regulatory Environment
Novel targets for anitarrhythmic drugs
Pharmacological interventions
Ion channel remodeling and arrhythmias
Introduction
Cellular and molecular basis for cardiac excitability
Heart failure - epidemiology and arrhythmia connection
K
Ca
Intracellular [Na]
Gap junctions and connexins
Autonomic signaling
Calmodulin kinase
Conclusions
Redox modification of ryanodine receptors by heart failure and cardiac arrhythmias: a potential therapeutic target

Introduction
Activation and deactivation of ryanodine receptors during normal excitation-contraction coupling
Defective ryanodine receptor function is linked to proarrhythmic delayed afterdepolarizations and calcium alternans
Genetic and acquired defects in ryanodine receptors
Effects of thiol modifying agents on ryanodine receptors
Reactive oxygen species production and oxidative stress in cardiac disease
Redox modification of ryanodine receptors in cardiac arrhythmia and heart failure

Therapeutnic potential of normalizing ryanodine receptor function
Targeting sodium/calcium exchange as an antiarrhythmic strategy

Introduction
Why target NCX in arrhythmias?
When do we see triggered arrhythmias?
What drugs are available?
Experience with NCX inhibitors
Caveat - the consequences on Calcium Handling
Needs for further development
Calcium/calmodulin-dependent protein kinase II (CaMKII) - Modulation of ion currents and potential role for arrhythmias

Introduction
Evolving role of Ca
Activation of CaMKII
Role of CaMKII in excitation-contraction coupling (ECC)
Role of CaMKII for arrhythmias
Summary
Selective targeting of ventricular potassium channels for arrhythmia suppression: feasible or risible?

Introduction
Effects of K

Conclusion and Future Directions
Cardiac sarcolemmal ATP-sensitive potassium channel antagonists: a class of drugs that may selectively target the ischemic myocardium

Introduction
Extracellular Potassium and Myocardial Ischemia
Extracellular Potassium and Ventricular Arrhythmias
Effect of ATP-sensitive Potassium Channel Antagonists

Summary
Mitochondrial Origin of Ischemia-Reperfusion Arrhythmias: cardiac mitochondria as a novel target for antiarrhythmic drugs

Introduction
Mechanisms of Arrhythmias
Ischemia-reperfusion arrhythmias
Mitochondrial Criticality: the root of ischemia-reperfusion arrhythmias
KATP activation and Arrhythmias
Metabolic Sinks and Reperfusion arrhythmias
Antioxidant depletion
Mitochondria as therapeutic targets
Cardiac gap junction modulators: a new target for antiarrhythmic drugs

Introduction
The development of gap junction modulators and Antiarrhythmic Peptides (AAPs)
Molecular mechanisms of action of AAPs
Antiarrhythmic effects of AAPs
Site- and condition-specific effects of AAPs effects in ischemia or simulated ischemia
Chemistry of AAPs
Short overview over cardiac gap junctions
Gap Junction Modulation as a new antiarrhythmic principle
Novel Pharmacological Targets for the Management of Atrial Fibrillation

Introduction
Novel Ion Targets for Atrial Fibrillation Treatment
Upstream Targets for Atrial Fibrillation
Gap Junctions as Targets for Atrial Fibrillation Therapy
Intracellular Calcium Handling and Atrial Fibrillation
Ultra-rapid delayed rectifier potassium current, I

Introduction
Molecular Biology of the K
IKur as a therapeutic target
Organic Blockers of I

Conclusions Non-Pharmacological Interventions
Non-pharmacologic manipulation of the autonomic nervous system in man for the prevention of life-threatening arrhythmias

Introduction
Sympathetic nervous system
Parasympathetic nervous system

Conclusion
Effects of endurance exercise training on cardiac autonomic regulation and susceptibility to sudden cardiac death: a non-pharmacological approach for the prevention of ventricular fibrillation
Introduction
Exercise and Susceptibility to Sudden Death
Cardiac Autonomic Neural Activity and Sudden Cardiac Death
β-adrenergic receptor Activation and Susceptibility to Ventricular Fibrillation
Effect of Exercise Conditioning on Cardiac Autonomic Regulation
Effect of Exercise Training on Myocyte Calcium Regulation
Summary and Conclusions
Dietary Omega-3 fatty acids as a Non-pharmacological Antiarrhythmic Intervention
Introduction
Fatty Acid Metabolism
Cellular Mechanisms
Animal Studies
Clinical Studies
Future Directions

Table of Contents provided by Blackwell's Book Services and R.R. Bowker. Used with permission.