Standalone versus integrated package

References

Multiphase Flow Metering Principles

MFM Fundamentals

Categories of Instruments

Density, \(? \)

Velocity, \(?v \)

Momentum, \(?v^2 \)

Mass Flow, \(?v \)

Elemental analysis

The Four Possible Routes to MFM

Options for Measurement

Possible Device Combinations

Techniques depending on homogenisation

Techniques not dependent on homogenisation

Techniques depending on flow separation

Key Multiphase Flow Metering Techniques

Density Measurement

Weighing of pipe

The vibrating tube densitometer

Acoustic attenuation

Impedance

Single-beam gamma densitometer

Broad-beam gamma densitometer

Multi-beam gamma densitometer

Gamma-ray scattering

Neutron absorption

Neutron scattering

Microwave attenuation

Internal (GRAB) sampling

Isokinetic sampling

Infrared

Tomography

Velocity Measurement

Turbine flow meters

Vortex shedding meter

Acoustic velocity (pulse and return)

Acoustic cross-correlation

Electromagnetic flow meter

Pulsed photon activation

Pulsed neutron activation
Heavy Oil Metering Applications p. 251
Introduction to Heavy Oils p. 251
Definitions p. 251
Formation processes and composition p. 251
Heavy Oil Recovery Methods p. 252
Cold recovery methods p. 253
Thermal recovery methods p. 254
Heavy Oil Metering Challenges p. 255
Composition effects p. 256
Viscosity and density effects p. 257
High temperature effects on metering hardware p. 264
References p. 264
Non-Conventional MFM Solutions p. 267
Using Choke Valves as MFM’s p. 267
Introduction to choke valves p. 267
Review of choke valve models p. 270
A choke valve metering system p. 272
Integration of Conventional Hardware, Fluid Dynamic Models and Artificial Intelligence Algorithms p. 274
Review of AI techniques p. 275
A combination of neural networks and MFM, using a venturi tube and a density meter p. 277
Integration of in-line MFM, ad hoc measurements at the wellhead and AI p. 285
References p. 292
Using Flow Loops to Verify the Performance of MFMs p. 295
Main Criteria for the Classification of Flow Loops p. 297
Instrumentation p. 301
Future Needs p. 301
References p. 301
Reserves Estimation and Production Allocation with MFM p. 303
Reserves Estimation and Metering Uncertainty p. 303
Uncertainty in the value of HOIP p. 305
Definition of reserves and reporting standards p. 305
Application of new technology to enhance well productivity p. 306
Change in asset operatorship or business model p. 307
Metering error when measuring produced volumes p. 308
Production Allocation and Metering Uncertainty p. 309
Pro-rata allocation, using relative throughput as a basis p. 310
Mass balance and quality adjustment allocation p. 310
Other allocation methods p. 311
Metering uncertainty p. 312