Introduction and Chapter Summary
Cartan's Moving Frame Method and Its Application to the Geometry and Evolution of Curves in the Euclidean, Affine and Projective Planes
Representation of Three-Dimensional Object Structure as Cross-Ratios of Determinants of Stereo Image Points
A Case Against Epipolar Geometry
Repeated Structures: Image Correspondence Constraints and 3D Structure Recovery
How to Use the Cross Ratio to Compute Projective Invariants from Two Images
On Geometric and Algebraic Aspects of 3D Affine and Projective Structures from Perspective 2D Views
The Double Algebra: An Effective Tool for Computing Invariants in Computer Vision
Matching Perspective Views of Parallel Plane Structures
Invariants for Recovering Shape from Shading
Fundamental Difficulties with Projective Normalization of Planar Curves
Invariant Size Functions
Euclidean Reconstruction from Uncalibrated Views
Accurate Projective Reconstruction
Applications of Motion Field of Curves
Affine Reconstruction from Perspective Image Pairs Obtained by a Translating Camera
Using Invariance and Quasi-Invariance for the Segmentation and Recovery of Curved Objects
Representations of 3D Objects that Incorporate Surface Markings
Model-based Invariant Functions and Their Use for Recognition
Integration of Multiple Feature Groups and Multiple Views into a 3D Object Recognition System
Hierarchical Object Description Using Invariants
Generalizing Invariants for 3-D to 2-D Matching
Recognition by Combinations of Model Views: Alignment and Invariance
Classification Based on the Cross Ratio
Correspondence of Coplanar Features Through P[supercript 2]-Invariant Representations
Integrating Algebraic Curves and Surfaces, Algebraic Invariants and Bayesian Methods for 2D and 3D Object Recognition
Table of Contents provided by Blackwell's Book Services and R.R. Bowker. Used with permission.