Editors' Preface

Encouraging Knowledge Construction

Introduction to Part I

Formal education versus everyday learning

Images of learning

An architecture for collaborative knowledge building

How do Lisp programmers draw on previous experience to solve novel problems?

Analysis-based learning on multiple levels of mental domain representation

Modeling active, hypothesis-driven learning from worked-out examples

Fostering conceptual change: The role of computer-based environments

Computers in a community of learners

Stimulating Higher Order Thinking and Problem Solving

Introduction to Part II

Teaching for transfer of problem-solving skills to computer programming

Cognitive effects of learning to program in Logo: A one-year study with sixth-graders

The role of social interaction in the development of higher order thinking in Logo environments

Effects with and of computers and the study of computer-based learning environments

Facilitating domain-general problem solving: Computers, cognitive uses and instruction

Conceptual fields, problem solving and intelligent computer tools

Creating Learning Environments

Introduction to Part III

Augmenting the discourse of learning with computer-based learning environments

Scientific reasoning across different domains

A rule-based diagnosis system for identifying misconceptions in qualitative reasoning in the physical domain "superposition of motion"

The provision of tutorial support for learning with computer-based simulations

Learning and instruction with computer simulations: Learning processes involved

No uses of computers in science teaching: Horizontal motion simulation and emulation building

Direct manipulation of physical concepts in a computerized exploratory laboratory

Multimedia learning environments designed with organizing principles from non-school settings

Table of Contents provided by Blackwell's Book Services and R.R. Bowker. Used with permission.