Introduction
Absorption and Emission of Light
Cavity Modes
Thermal Radiation and Planck's Law
Absorption, Induced, and Spontaneous Emission
Basic Photometric Quantities
Polarization of Light
Absorption and Emission Spectra
Transition Probabilities
Coherence Properties of Radiation Fields
Coherence of Atomic Systems
Widths and Profiles of Spectral Lines
Natural Linewidth
Doppler Width
Collisional Broadening of Special Lines
Transit-Time Broadening
Homogeneous and Inhomogeneous Line Broadening
Saturation and Power Broadening
Spectral Line Profiles in Liquids and Solids
Spectroscopic Instrumentation
Spectrographs and Monochromators
Interferometers
Comparison Between Spectrometers and Interferometers
Accurate Wavelength Measurements
Detection of Light
Conclusions
Lasers as Spectroscopic Light Sources
Fundamentals of Lasers
Laser Resonators
Spectral Characteristics of Laser Emission
Experimental Realization of Single-Mode Lasers
Controlled Wavelength Tuning of Single-Mode Lasers
Linewidths of Single-Mode Lasers
Tunable Lasers
Nonlinear Optical Mixing Techniques
Gaussian Beams
Doppler-Limited Absorption and Fluorescence Spectroscopy with Lasers
Advantages of Lasers in Spectroscopy
High-Sensitivity Methods of Absorption Spectroscopy
Direct Determination of Absorbed Photons
Ionization Spectroscopy