Introductory Address
The New Biology and Vaccine Research

Keynote Presentation
Mucosal Immunity to Vaccines: Current Concepts for Vaccine Development and Immune Response Analysis

Oral Diseases and Host Immune Responses
Prospects for Human Mucosal Vaccines
Bacterial Diseases of the Oral Tissues
Oral Virus Infections: The Potential for Gene Transfer in Treatment and Prevention

Update on Vaccines and Vaccine Development
Bacterial Mucosal Vaccines
A General Overview of Viral Vaccine Development
Vaccines and the Mucosal Immune System
An Update on the "Jennerian" And Modified "Jennerian" Approach to Vaccination of Infants and Young Children Against Rotavirus Diarrhea
Induction of Mucosal and Serum Immune Responses to a Specific Antigen of Periodontal Bacteria
IgA1 Proteases and Host-Parasite Relationships in the Oral Cavity
Transport of IgA Immune Complexes Across Epithelial Membranes: New Concepts in Mucosal Immunity
Effect of Mucosal Microenvironment on Immune Response to Viruses
Optimizing Mucosal and Systemic Immune Responses
Induction of T Helper Cells and Cytokines for Mucosal IgA Responses
Cytokine Production and T Cell Receptor Expression by Salivary Gland T Cells and Intraepithelial T Lymphocytes for the Regulation of the IgA Response

Immunological Adjuvants
Delivery Systems and Immune Analysis
Passive Immunity
M Cell-Mediated Antigen Transport and Monoclonal IgA Antibodies for Mucosal Immune Protection
A Mechanism of Passive Immunization with Monoclonal Antibodies to a 185,000 M[subscript r] Streptococcal Antigen
Active Immunity
Delivery of Antigens by Recombinant Avirulent Salmonella Strains
Use of Recombinant BCG as a Vaccine Delivery Vehicle
Vaccinia Virus Recombinants as Potential Herpes Simplex Virus Vaccines
Liposomes and Conjugate Vaccines for Antigen Delivery and Induction of Mucosal Immune Responses
Peroral Immunization With a Cholera Toxin-Linked Bacterial Protein Antigen and Synthetic Peptide
Peptomers as Vaccine Candidates
Target Antigen Selection and Vaccine Development
Structural and Functional Studies of Herpes Simplex Virus Glycoprotein D