Foreword
Preface to the English Edition
Preface to the Russian Edition
Introduction
Classical oscillators with small dissipation
Quantum mechanical features of macroscopic oscillators
Mechanical Oscillators with Small Dissipation
Fundamental dissipative processes in solids
Thermoelastic dissipation
Dissipation due to phonon-phonon interactions
Dissipation due to phonon-electron interactions in metals
Energy losses due to lattice defects and the internal structures of solid bodies
Losses due to gas friction
Surface losses
Losses due to coupling of different kinds of vibrations
Losses in a resonator's suspension
High-Q resonators made from sapphire monocrystals
Electromagnetic Resonators with Small Dissipation
Superconducting cavity electromagnetic resonators
Surface resistance and residual resistance of superconductors
Quality factors of superconducting resonators
Frequency stability of superconducting resonators
Methods of constructing superconducting resonators
Properties of superconducting resonators with dielectric interiors
High-quality dielectric ring resonators
Radiative losses due to curvature of the waveguide
Radiative losses due to spatial variations of the dielectric constant inside the resonator
Radiative losses due to roughness or to smooth inhomogeneities of the resonator's geometry
High-quality Electromagnetic Resonators in Physical Experiments
Electromagnetic self-excited oscillators stabilized by high-quality superconducting resonators
Applications of superconducting resonators in radiophysical measurements
Measurements of very small mechanical vibrations
Measurements of small electromagnetic losses in solids
Measurements of the surface impedances of superconductors
Other applications of superconducting resonators
Mechanical Oscillators in Physical Experiments
Mechanical gravitational antennae
Applications of high-quality mechanical resonators to frequency stabilization