Second project. PKa equalization in the N-H...O/O-H system p. 183

Conclusions p. 184

Appendix. PKa tables arranged for chemical functionality p. 184

The empirical laws governing the H-bonds: A summary p. 193

Summary of chemical leitmotifs (CLs): The three main classes of H-bonds p. 193

Summary of VB methods: The electrostatic-covalent H-bond model (ECHBM) p. 196

Summary of the PA/Pka equalization principle p. 199

On the chemical nature of the h-bond p. 200

Outline a novel transition-state H-bond theory (TSHBT) p. 203

Empirical laws, models and scientific theories: An introduction p. 203

A new way of looking at the H-bond: The TSHBT p. 206

Introduction p. 206

Criteria for the choice of a suitable PT reaction p. 206

A practical verification of the TSHBT p. 208

A suitable reaction: The ketohydrazone?azoenol system p. 208

Methods of study p. 208

Analysis of crystallographic results p. 210

DFT emulation p. 211

Marcus analysis of DFT data p. 213

Conclusions p. 220

The Strength of the H-bond: Definitions and thermodynamics p. 222

The H-bond strength in gas-phase, non-polar solvents and molecular Crystals p. 222

Enthalphy-entropy compensation and its influence on the H-bond strength p. 222

H-bond strength in the gas phase p. 223

H-bond strength in polar solvents p. 224

H-bond strength in molecular crystals p. 225

The H-bond strength in aqueous solutions p. 225

Introduction: Drug-receptor binding as a sample system p. 225

Hydrophilic and Hydrophobic contributions to drug-receptor binding p. 226

Hydrophobic binding: Thermodynamics of the steriod-nuclear receptor system p. 228

Hydrophilic-hydrophobic binding: Thermodynamics of the adenosine A1 membrane receptor p. 232

Enthalphy-entropy compensation: A universal property of drug-receptor binding p. 235

Solvent reorganization and enthalpy-entropy compensation in drug-receptor binding: The Grunward and Steel model p. 238

Thermodynamic discrimination in ligand-gated ion channels p. 241

Enthalpy-entropy compensation in crown ethers and cryptands p. 242

The role of strong H-bonds in nature: A gallery of functional H-bonds p. 245

Introduction p. 245

Detecting strong H-bonds p. 245

The concept of 'functional H-bonds' p. 245

RAHB-driven prototropic tautomerism p. 247