Membrane Protein Engineering, Solubilization and Purification

Multicolor fluorescence-based screening toward structural analysis of multiprotein membrane complexes
A novel screening approach for optimal and functional fusion of T4 lysozyme in GPCRs

Membrane preparation and solubilization
Amphipathic agents for membrane protein study
Quantification of detergent using colorimetric methods in membrane protein crystallography
Solubilization of G Protein-Coupled Receptors: A Convenient Strategy to Explore Lipid-Receptor Interaction
Overexpression, Isolation, Purification and Crystallization of NhaA
Purification, refolding and crystallization of the outer membrane protein OmpG from Escherichia coli
Biophysical Approaches to the Study of LeuT, a Prokaryotic Homolog of Neurotransmitter Sodium Symporters
Generation and Use of Antibody Fragments Against Membrane Proteins
Generation of recombinant antibody fragments for membrane protein crystallization

Phage Display Selections for Affinity Reagents to Membrane Proteins in Nanodiscs
Antibody fragments for crystallization, trapping of active conformations and stabilization of G-protein coupled receptors and their signaling complexes

Biophysical Studies of Membrane Proteins
Conformational Analysis of G Protein-Coupled Receptor Signaling by Hydrogen/Deuterium Exchange Mass Spectrometry
EPR Studies of Gating Mechanisms in Ion Channels
Magic-Angle-Spinning Solid-State NMR of Membrane Proteins
Solution NMR Structure Determination of Polytopic ?-helical membrane proteins: A guide to spin label paramagnetic relaxation enhancement restraints
Crystallization of Membrane Proteins
Inducing Two-Dimensional Crystallization of Membrane Proteins by Dialysis for Electron Crystallography
Crystallization of Membrane Proteins by Vapor Diffusion
An empirical approach to bicelle crystallization
Fluorescence Recovery After Photobleaching in Lipidic Cubic Phase (LCP-FRAP): A pre-crystallization assay for membrane proteins
Crystallization of Proteins from Crude Bovine Rod Outer Segments
Crystallization of Photosystem II for Time Resolved Structural Studies Using an X-ray Free Electron Laser
Computational Approaches to Understand Membrane Proteins
Major Intrinsic Protein Superfamily: Channels with Unique Structural Features and Diverse Selectivity Filters
Comparative Sequence-Function Analysis of the Major Facilitator Superfamily: the 'Mix-and-Match' Method
Elucidating Ligand-Modulated Conformational Landscape of GPCRs Using Cloud-computing Approaches
Table of Contents provided by Blackwell's Book Services and R.R. Bowker. Used with permission.