Uniqueness of the interpolation polysplines p. 64
Application of polysplines to magnetism and CAGD p. 67
Smoothing airborne magnetic field data p. 67
Applications to computer-aided geometric design p. 71
Parallel data lines [Gamma subscript j] p. 71
Nonparallel data curves [Gamma subscript j] p. 74
Conclusions p. 75
The objects concept: harmonic and polyharmonic functions in annuli in R[superscript 2] p. 77
Harmonic functions in spherical (circular) domains p. 77
Harmonic functions in the annulus p. 79
"Parametrization" of the space of harmonic functions in the annulus and the ball: the Dirichlet problem p. 82
The Dirichlet problem in the ball p. 85
An important change of the variable, v = log r p. 86
Biharmonic and polyharmonic functions p. 86
Polyharmonic functions in annulus and circle p. 87
The set of solutions of L[superscript p subscript (k)]u(r) = 0 p. 89
The operators L[superscript p subscript (k)] (d/dr) generate an Extended Complete Chebyshev system p. 90
"Parametrization" of the space of polyharmonic functions in the annulus and ball: the Dirichlet problem p. 92
The one-dimensional case p. 92
The biharmonic case p. 92
The polyharmonic case p. 95
Another approach to "parametrization": the Almansi representation p. 96
Radially symmetric polyharmonic functions p. 97
Another proof of the representation of radially symmetric polyharmonic functions p. 98
Polysplines on annuli in R[superscript 2] p. 101
The biharmonic polysplines, p = 2 p. 103
Radially symmetric interpolation polysplines p. 104
Applying the change of variable v = log r p. 107
The radially symmetric biharmonic polysplines p. 108
Computing the polysplines for general (nonconstant) data p. 109
The uniqueness of interpolation polysplines on annuli p. 110
The change v = log r and the operators M[subscript k,p] p. 111
The fundamental set of solutions for the operator M[subscript k,p] (d/dv) p. 113
Polysplines on strips and annuli in R[superscript n] p. 117
Polysplines on strips in R[superscript n] p. 118
Polysplines on strips with data periodic in y p. 119
Polysplines on strips with compact data p. 121
The case p = 2 p. 122
Polysplines on annuli in R[superscript n] p. 122
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biharmonic polsplines in \mathbb{R}^3 and \mathbb{R}^4</td>
<td>127</td>
</tr>
<tr>
<td>An "elementary" proof of the existence of interpolation polsplines</td>
<td>128</td>
</tr>
<tr>
<td>Compendium on spherical harmonics and polyharmonic functions</td>
<td>129</td>
</tr>
<tr>
<td>Introduction</td>
<td>129</td>
</tr>
<tr>
<td>Notations</td>
<td>130</td>
</tr>
<tr>
<td>Spherical coordinates and the Laplace operator</td>
<td>131</td>
</tr>
<tr>
<td>Fourier series and basic properties</td>
<td>134</td>
</tr>
<tr>
<td>Finding the point of view</td>
<td>136</td>
</tr>
<tr>
<td>The functions $r^k \cos k \phi$ and $r^k \sin k \phi$ are harmonic for $k \geq 0$</td>
<td>136</td>
</tr>
<tr>
<td>The functions $r^k \cos k \phi$ and $r^k \sin k \phi$ are polynomials</td>
<td>136</td>
</tr>
<tr>
<td>The functions $r^k \cos k \phi$ and $r^k \sin k \phi$ are homogeneous of degree $k \geq 0$</td>
<td>137</td>
</tr>
<tr>
<td>The functions $r^k \cos k \phi$ and $r^k \sin k \phi$ are a basis of the homogeneous harmonic polynomials of degree k</td>
<td>137</td>
</tr>
<tr>
<td>The multidimensional Ansatz</td>
<td>138</td>
</tr>
<tr>
<td>Homogeneous polynomials in \mathbb{R}^n</td>
<td>138</td>
</tr>
<tr>
<td>Examples of homogeneous polynomials</td>
<td>139</td>
</tr>
<tr>
<td>Gauss representation of homogeneous polynomials</td>
<td>139</td>
</tr>
<tr>
<td>Gauss representation in \mathbb{R}^2</td>
<td>140</td>
</tr>
<tr>
<td>Gauss representation in \mathbb{R}^n</td>
<td>141</td>
</tr>
<tr>
<td>Gauss representation: analog to the Taylor series, the polyharmonic paradigm</td>
<td>145</td>
</tr>
<tr>
<td>The Almansi representation</td>
<td>146</td>
</tr>
<tr>
<td>The sets H_k are eigenspaces for the operator $[\Delta_{\theta}]$</td>
<td>147</td>
</tr>
<tr>
<td>Completeness of the spherical harmonics in $L^2(S^{n-1})$</td>
<td>149</td>
</tr>
<tr>
<td>Solutions of $[\Delta] w(x) = 0$ with separated variables</td>
<td>152</td>
</tr>
<tr>
<td>Zonal harmonics $Z^{(k)}(\theta)$: the functional approach</td>
<td>153</td>
</tr>
<tr>
<td>Estimates of the derivatives of $Y_k(\theta)$: Markov-Bernstein-type inequality</td>
<td>159</td>
</tr>
<tr>
<td>The classical approach to zonal harmonics</td>
<td>159</td>
</tr>
<tr>
<td>The representation of polyharmonic functions using spherical harmonics</td>
<td>164</td>
</tr>
<tr>
<td>Representation of harmonic functions using spherical harmonics</td>
<td>166</td>
</tr>
<tr>
<td>Solutions of the spherical operator $L^{p,k} f(r) = 0$</td>
<td>168</td>
</tr>
<tr>
<td>Operator with constant coefficients equivalent to the spherical operator $L^{p,k}$</td>
<td>168</td>
</tr>
<tr>
<td>Representation of polyharmonic functions in annulus and ball</td>
<td>173</td>
</tr>
<tr>
<td>The operator $r^{n-1} L^{p,k}$ is formally self-adjoint</td>
<td>177</td>
</tr>
<tr>
<td>The Almansi theorem</td>
<td>179</td>
</tr>
<tr>
<td>Bibliographical notes</td>
<td>185</td>
</tr>
<tr>
<td>Appendix on Chebyshev splines</td>
<td>187</td>
</tr>
</tbody>
</table>
Differential operators and Extended Complete Chebyshev systems p. 187
Divided differences for Extended Complete Chebyshev systems p. 191
The classical polynomial case p. 191
Divided difference operators for Chebyshev systems p. 194
Lagrange-Hermite interpolation formula for Chebyshev systems p. 196
Dual operator and ECT-system p. 197
Green's function and Taylor formula p. 198
Chebyshev splines and one-sided basis p. 199
TB-splines, or the Chebyshev B-splines as a Peano kernel for the divided difference p. 201
Dual basis and Riesz basis property for the TB-splines p. 203
Natural Chebyshev splines p. 204
Appendix on Fourier series and Fourier transform p. 209
Bibliographical notes p. 212
Bibliography to Part I p. 213
Cardinal polysplines in R\[superscript n\] p. 217
Cardinal L-splines according to Micchelli p. 221
Cardinal L-splines and the interpolation problem p. 221
Differential operators and their solution sets U[subscript Z+1\[Lambda\]] p. 226
Variation of the set U[subscript Z+1\[Lambda\]] with \[Lambda\] and other properties p. 228
The Green function \[phi superscript + subscript Z\](x) of the operator \[pound subscript Z+1\](x) p. 229
The dictionary: L-polynomial case p. 232
The generalized Euler polynomials A[subscript Z\[Lambda\]](x; \[lambda\]) p. 232
Generalized divided difference operator p. 236
Zeros of the Euler-Frobenius polynomial \[Pi subscript Z\](\[lambda\]) p. 237
The cardinal interpolation problem for L-splines p. 238
The cardinal compactly supported L-splines Q[subscript Z+1\[Lambda\]] p. 239
Laplace and Fourier transform of the cardinal TB-spline Q[subscript Z+1\[Lambda\]] p. 241
Convolution formula for cardinal TB-splines p. 243
Differentiation of cardinal TB-splines p. 244
Hermite-Gennocchi-type formula p. 245
Recurrence relation for the TB-spline p. 246
The adjoint operator \[pound^*\][subscript Z+1\[Lambda\]] and the TB-spline Q*[subscript Z+1\[Lambda\]](x) p. 248
The Euler polynomial A[subscript Z\[Lambda\]](x; \[lambda\]) and the TB-spline Q[subscript Z+1\[Lambda\]](x) p. 250
The leading coefficient of the Euler-Frobenius polynomial \[Pi subscript Z\](\[lambda\]) p. 253
Schoenberg's "exponential" Euler L-spline \[Phi subscript Z\](x; \[lambda\]) and A[subscript Z\[Lambda\]](x; \[lambda\]) p. 254
Marsden's identity for cardinal L-splines p. 257
Peano kernel and the divided difference operator in the cardinal case p. 257
Two-scale relation (refinement equation) for the TB-splines $Q_{Z+1}[\lambda; h]$

Symmetry of the zeros of the Euler-Frobenius polynomial $[\Pi_{Z}][\lambda]$ p. 261

Estimates of the functions $A_{Z}(x; \lambda)$ and $Q_{Z+1}(x)$ p. 264

Riesz bounds for the cardinal L-splines $Q_{Z+1}[x]$ p. 267

Summary of necessary results for cardinal L-splines p. 270

Riesz bounds p. 271

The asymptotic of $A_{Z}(0; \lambda)$ in k p. 278

Asymptotic of the Riesz bounds A, B p. 281

Asymptotic for TB-splines $Q_{Z+1}[x]$ on the mesh hZ p. 282

Synthesis of compactly supported polysplines on annuli p. 283

Cardinal interpolation polysplines on annuli p. 287

Introduction p. 287

Formulation of the cardinal interpolation problem for polysplines p. 288

$[\alpha] = 0$ is good for all L-splines with $L = M[k,p]$ p. 290

Explaining the problem p. 293

Schoenberg's results on the fundamental spline $L(X)$ in the polynomial case p. 294

Asymptotic of the zeros of $[\Pi_{Z}][\lambda; 0]$ p. 298

The fundamental spline function $L(X)$ for the spherical operators $M[k,p]$ p. 300

Estimate of the fundamental spline $L(x)$ p. 303

Estimate of the cardinal spline $S(x)$ p. 304

Synthesis of the interpolation cardinal polyspline p. 305

Bibliographical notes p. 306

Bibliography to Part II p. 307

Wavelet analysis p. 309

Chui's cardinal spline wavelet analysis p. 313

Cardinal splines and the sets $V[j]$ p. 313

The wavelet spaces $W[j]$ p. 315

The mother wavelet $[\psi]$ p. 317

The dual mother wavelet $[\psi]$ p. 318

The dual scaling function $[\phi]$ p. 319

Decomposition relations p. 319

Decomposition and reconstruction algorithms p. 321

Zero moments p. 322

Symmetry and asymmetry p. 323

Cardinal L-spline wavelet analysis p. 325

Introduction: the space $V[j]$ and $W[j]$ p. 326

Multiresolution analysis using L-splines p. 329

The two-scale relation for the TB-splines $Q_{Z+1}(x)$ p. 331

Construction of the mother wavelet $[\psi_{h}]$ p. 333
Some algebra of Laurent polynomials and the mother wavelet ψ_{h} p. 337
Some algebraic identities p. 339
The function ψ_{h} generates a Riesz basis of W_{0} p. 343
Riesz basis from all wavelet functions $\psi_{2^{-j}h}(x)$ p. 345
The decomposition relations for the scaling function Q_{Z+1} p. 352
The dual scaling function ϕ and the dual wavelet ψ p. 356
Decomposition and reconstruction by L-spline wavelets and MRA p. 362
Discussion of the standard scheme of MRA p. 368
Polyharmonic wavelet analysis: scaling and rotationally invariant spaces p. 371
The refinement equation for the normed TB-spline Q_{Z+1} p. 372
Finding the way: some heuristics p. 373
The sets PV_{j} and isomorphisms p. 375
Spherical Riesz basis and father wavelet p. 377
Polyharmonic MRA p. 379
Decomposition and reconstruction for polyharmonic wavelets and the mother wavelet p. 384

Zero moments of polyharmonic wavelets p. 391
Bibliographical notes p. 393
Bibliography to Part III p. 395
Polysplines for general interfaces p. 397
Heuristic arguments p. 399
Introduction p. 399
The setting of the variational problem p. 401
Polysplines of arbitrary order p p. 403
Counting the parameters p. 404
Main results and techniques p. 405
Open problems p. 406
Definition of polysplines and uniqueness for general interfaces p. 409
Introduction p. 409
Definition of polysplines p. 411
Basic identity for polysplines of even order $p = 2q$ p. 415
Identity for $L = [\Delta^{2q}]$ p. 416
Identity for the operator $L = L^{2}$ p. 417
Uniqueness of interpolation polysplines and extremal Holladay-type property p. 421
Holladay property p. 425
A priori estimates and Fredholm operators p. 429
Basic proposition for interface on the real line p. 429
A priori estimates in a bounded domain with interfaces p. 432
Fredholm operator in the space H^{2p+r} (D \ ST) for $r \geq 0$ p. 436
The space $[\Lambda_{1}]$ for $L = [\Delta^{p}]$ p. 437
The case $L = [\Delta^{2}]$ p. 442