Contributors

Preface

Structural requirements of a nascent protein for processing to a PI-G anchored form: studies in intact cells and cell-free systems p. 1

Signal transduction by GPI-anchored membrane proteins p. 22

Emergence of the LY-6 superfamily of GPI-anchored molecules p. 29

Glycosylated-phosphatidylinositols as virulence factors in Leishmania p. 38

Why do so many surface proteins of trypanosomatids have GPI-anchors? p. 58

Probing the signal for glycosphatidylinositol anchor attachment using decay accelerating factor as a model system p. 73

Inositolglycans and cellular signalling p. 85

Electrospray mass spectrometry of the glycosylinositol phospholipid of the scrapie prion protein p. 111

Biosynthesis of glycosphosphoinositol anchors in Saccharomyces cerevisiae p. 121

Characterization of the plasma glycosylphosphatidylinositol-specific phospholipase D (GPI-PLD) p. 132

Evolutionary aspects of GPI metabolism in kinetoplastid parasites p. 140

Biosynthesis of glycosyl-phosphatidylinositol p. 155

Polarized sorting of GPI-linked proteins in epithelia and membrane microdomains p. 170

Evaluation of somatic cell variants deficient in glycosylphosphatidyl-inositol anchoring as candidates for genetic correction p. 197

Biochemical and functional characterization of a glycolipid anchored cell adhesion molecule in Dictyostelium discoideum p. 211

The molecular biology of GPI-anchored border hydrolases p. 229

The biology of the glycosylphosphatidylinositol-specific phospholipase C of Trypanosoma brucei p. 246

Bacterial PIPLCs--unique properties and usefulness in studies on GPI anchors p. 260

A chemical modification that makes glycoinositol phospholipids resistant to phospholipase C cleavage: fatty acid acylation of inositol p. 276

Glycosylphosphatidylinositol anchored recognition molecules that function in axonal fasciculation, growth and guidance in the nervous system p. 294

Table of Contents provided by Blackwell's Book Services and R.R. Bowker. Used with permission.