Preface to the Second Edition

Texture, Viscosity and Food

Introduction

Importance of Texture

The Vocabulary of Texture

Texture and Time of Day

Defective Textures

Textural Diversity

Status of Food Texture Measurements

Definitions of Texture

Texture-related Concepts and Their Definitions

Texture Versus Viscosity

Texture and Food Processing

Texture and Health

Texture and Structure

Rheology and Texture

Early History

Suggestions for Further Reading

Body-Texture Interactions

Introduction

Importance of the Tactile Sense

Some Definitions

The Sequence of Mastication

Methods and Processes Used for Disintegration of Food

Rate of Compression between the Teeth

Soothing Effect of Mastication

Saliva

Forces Generated between the Teeth and Palate

Tracking Food Movement Within the Mouth

Reasons for Masticating Food

Nonoral Methods for Sensing Texture

The Hand

Sight

Sound

Physics and Texture

Introduction

Deformation

Effect of Lubrication

Time Aspects of Deformation

Materials Science

Young’s Modulus
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shear Modulus</td>
<td>69</td>
</tr>
<tr>
<td>Bulk Modulus</td>
<td>69</td>
</tr>
<tr>
<td>Poisson's Ratio</td>
<td>70</td>
</tr>
<tr>
<td>Interrelations Between Moduli</td>
<td>70</td>
</tr>
<tr>
<td>Creep Compliance</td>
<td>71</td>
</tr>
<tr>
<td>Viscosity</td>
<td>73</td>
</tr>
<tr>
<td>Laminar Flow and Turbulent Flow</td>
<td>73</td>
</tr>
<tr>
<td>Dynamic Viscosity</td>
<td>75</td>
</tr>
<tr>
<td>Fluidity</td>
<td>76</td>
</tr>
<tr>
<td>Kinematic Viscosity</td>
<td>76</td>
</tr>
<tr>
<td>Relative Viscosity</td>
<td>76</td>
</tr>
<tr>
<td>Apparent Viscosity</td>
<td>77</td>
</tr>
<tr>
<td>Shear Stress</td>
<td>77</td>
</tr>
<tr>
<td>Shear Rate</td>
<td>77</td>
</tr>
<tr>
<td>Factors Affecting Viscosity</td>
<td>78</td>
</tr>
<tr>
<td>Temperature</td>
<td>78</td>
</tr>
<tr>
<td>Concentration of Solute</td>
<td>79</td>
</tr>
<tr>
<td>Molecular Weight of Solute</td>
<td>80</td>
</tr>
<tr>
<td>Pressure</td>
<td>81</td>
</tr>
<tr>
<td>Suspended Matter</td>
<td>81</td>
</tr>
<tr>
<td>Types of Viscous Behavior</td>
<td>81</td>
</tr>
<tr>
<td>Newtonian</td>
<td>81</td>
</tr>
<tr>
<td>Non-Newtonian Fluids</td>
<td>82</td>
</tr>
<tr>
<td>Plastic (or Bingham)</td>
<td>82</td>
</tr>
<tr>
<td>Pseudoplastic</td>
<td>86</td>
</tr>
<tr>
<td>Dilatant Flow</td>
<td>86</td>
</tr>
<tr>
<td>The General Equation for Viscosity</td>
<td>87</td>
</tr>
<tr>
<td>Other Flow Equations</td>
<td>88</td>
</tr>
<tr>
<td>The Power Equation (also known as the Ostwald-de Wael model)</td>
<td>89</td>
</tr>
<tr>
<td>Herschel-Bulkley Model</td>
<td>89</td>
</tr>
<tr>
<td>Casson Equation</td>
<td>89</td>
</tr>
<tr>
<td>Structural Viscosity</td>
<td>91</td>
</tr>
<tr>
<td>Time Dependency</td>
<td>92</td>
</tr>
<tr>
<td>Weissenberg Effect (Normal Force)</td>
<td>95</td>
</tr>
<tr>
<td>Viscoelasticity</td>
<td>96</td>
</tr>
<tr>
<td>Small Amplitude Oscillatory Testing (SAOT)</td>
<td>98</td>
</tr>
<tr>
<td>Mechanical Models</td>
<td>100</td>
</tr>
<tr>
<td>Fracture</td>
<td>101</td>
</tr>
<tr>
<td>Stress Concentration</td>
<td>102</td>
</tr>
<tr>
<td>Isotropy and Anisotropy</td>
<td>103</td>
</tr>
<tr>
<td>Units of Measurement</td>
<td>104</td>
</tr>
</tbody>
</table>
Miscellaneous Methods p. 170
Optical Methods p. 170
Sound p. 171
Ultrasound Tests p. 172
Rollability p. 172
Electromyography p. 173
Electropalatography p. 174
Multiple-point Sheet Sensor (MSS) p. 174
Fractal Analysis and Fast Fourier Transform p. 174
Imperfect Lubricated Squeezing Flow p. 175
Sliding Pin Consistometer (SPC) p. 176
Pendulum Impact Test p. 176
Universal Testing Machines (UTM) p. 177
Speed of Data Acquisition p. 178
Texture Profile Analysis (TPA) p. 182
Accuracy and Precision of Measurement p. 187
Practice of Objective Texture Measurement

Introduction p. 189
Force Measuring Instruments p. 189
Hand-Operated Puncture Testers p. 189
Mechanical and Motorized Puncture Testers p. 198
Bloom Gelometer p. 198
Stevens LFRA Texture Analyzer p. 198
Maturometer p. 199
Christel Texture Meter p. 200
Armour Tenderometer p. 200
Other Puncture Testers p. 201
Compression-Extrusion Testers p. 201
FMC Pea Tenderometer p. 201
Texture Press p. 202
Ottawa Pea Tenderometer p. 206
Vettori Manghi Tenderometro p. 207
FirmTech 2 p. 207
Cutting-Shear Test p. 207
Warner-Bratzler Shear p. 207
Pasta Firmness p. 210
Torsion Devices p. 210
Farinograph p. 211
Mixograph p. 212
Bending p. 212
Structograph p. 212
Tensile Testers p. 212
Extensograph p. 212
FTC Texture Test System p. 213
Distance Measuring Instruments p. 213
Bostwick Consistometer p. 213
The Hilker-Guthrie Plummet p. 215
Ridgelimiter p. 215
Penetrometer p. 216
SURDD Hardness Tester p. 219
Haugh Meter p. 220
Baker Compressimeter p. 222
Adams Consistometer and Tuc Cream Corn Meter p. 223
USDA Consistometer p. 223
Volume Measuring Instruments p. 224
Loaf Volume Meter p. 224
Succulometer p. 226
Time Measuring Instruments p. 226
BBIRA Biscuit Texture Meter p. 226
Miscellaneous Methods p. 226
Torry Brown Homogenizer p. 226
Multiple Measuring Instruments p. 227
GF Texturometer p. 227
FTC Texture Test System p. 228
Ottawa Texture Measuring System (OTMS) p. 229
Universal Testing Machines (UTM) p. 229
Instron p. 230
TA.XT2 Texture Analyzer p. 230
QTS Texture Analyzers p. 231
Lloyd Texture Analyzer p. 232
Tensipresser p. 232
Viscosity Measurement p. 235
Introduction p. 235
Capillary Type p. 235
Tube Viscometry p. 241
Orifice Type p. 242
Coaxial Rotational Viscometers p. 242
Cone and Plate and Parallel Plate Viscometers p. 245
Modes of Operation of Rotational Viscometers p. 246
Other Rotational Viscometers p. 247
Paddle Viscometry p. 248
Falling-Ball Viscometers p. 250